Fig. F1 – Zones time/current of effects of AC current on human body when passing from left hand to feet (DB422220_EN)
Fig. F2 – Contact with live part (Direct contact) (DB422221_EN)
Fig. F3 – Contact with parts in fault conditions (Indirect contact) (DB422222_EN)
Fig. F4 – Inherent protection against direct contact by insulation of a 3-phase cable with outer sheath (DB422223)
Fig. F5 – Example of isolation by enclosure (PB119913)
Fig. F6 – Illustration of the dangerous touch voltage Uc (DB431001)
Fig. F8 – Additional protection by RCD (DB431012)
Fig. F9 – Tripping curve of High Sensitivity 30mA RCD (in blue) compared to body sensitivity curves (DB431013_EN)
Fig. F10 – Circuit supplying socket-outlets
Fig. F11 – Automatic disconnection of supply for TT system (DB422225_EN)
Fig. F15 – Distribution circuits (DB422239_EN)
Fig. F16 – Separate earth electrode (DB422240_EN)
Fig. F17 – Unearthed exposed conductive parts (A) (DB422243)
Fig. F18 – Automatic disconnection in TN system (DB422226_EN)
Fig. F20 – Disconnection by circuit breaker for a TN system (DB422227_EN)
Fig. F21 – Disconnection by fuses for a TN system (DB422228_EN)
Fig. F22 – Implementation of the TN earthing system (DB422248_EN)
Fig. F23 – Calculation of L max. for a TN-earthed system, using the conventional method (DB422249)
Fig. F29 – Circuit breaker with low-set instantaneous magnetic tripping (DB422250_EN)
Fig. F30 – RCD protection on TN systems with high earth-fault-loop impedance (DB422251_EN)
Fig. F31 – Improved equipotential bonding (DB422252_EN)
Fig. F32 – Simplified circuit (DB431014)
Fig. F33 – Fault current path for a first fault in IT system (DB431015)
Fig. F34 – Vector representation of voltages and currents in case of fault between phase 1 and earth (DB431016)
Fig. F35 – Example of phase-to-earth Insulation Monitoring Device used in IT system (PB116742)
Fig. F36 – Two different situations to be considered (DB422231_EN)
Fig. F37 – Circuit breaker tripping on double fault situation when exposed-conductive-parts are connected to a common protective conductor (DB422230_EN)
Fig. F39 – Calculation of Lmax. for an IT-eathed system, showing fault-current path for a double-fault condition (DB422257_EN)
Fig. F41 – Positions of essential functions in 3-phase 3-wire IT-earthed system (DB422253_EN)
Fig. F43 – Non-automatic (manual) fault location (DB422254)
Fig. F44 – Fixed automatic fault location (DB422255_EN)
Fig. F45 – Automatic fault location and insulation-resistance data logging (DB422256)
Fig. F46 – Principle of RCD (DB422260)
Fig. F47 – The 2 technologies of RCDs
(DB431017_EN)
(DB431039_EN)
Fig. F48 – Industrial-type CB with RCD module
(LV433831_L28)
(PB116744)
(PB116745)
Fig. F49 – Domestic residual current circuit breakers (RCCBs) for earth leakage protection
Fig. F50 – RCDs with separate toroidal current transformers (Vigirex)
Fig. F51 – Different types of RCDs (DB431022_EN)
Fig. F53 – Standardized 0.5 μs/100 KHz current transient wave (DB422261_EN)
Fig. F54 – Standardized 1.2/50 μs voltage transient wave (DB422262_EN)
Fig. F55 – Standardized current-impulse wave 8/20 μs (DB422263_EN)
Fig. F58 – Means of reducing the ratio IΔn/Iph (max.) (DB422264)
Fig. F60 – Residual current circuit breakers (RCCBs) (DB422265)
Fig. F61 – Total discrimination at 3 levels (DB422244_EN)
Fig. F62 – Total discrimination at 2 levels (DB422245_EN)
Fig. F63 – Total discrimination at 3 or 4 levels (DB422246_EN)
Fig. F64 – Coordination between RCDs type B (DB431019_EN)
Fig. F65 – Coordination between RCD type A and RCD type B (DB431020_EN)
Fig. F66 – Example of installation with discriminative protection at 2 or 3 levels (DB422247_EN)
Fig. F67 – Low-voltage supplies from a safety isolating transformer (DB422232)
Fig. F68 – Safety supply from a class II separation transformer (DB422233)
Fig. F69 – Principale of class II insultation level (IEC 60364-4-41 sub-clause 412) (DB422234_EN)
Fig. F70 – Protection by out-of arm’s reach arrangements and the interposition of non-conducting obstacles (DB422235_EN)
Fig. F71 – Equipotential bonding of all exposed-conductive-parts simultaneously accessible (DB422236_EN)
Fig. F72 – Overcurrent protection curve and earth fault potential current (DB431027_EN)
Fig. F73 – Origin of fires in building (DB422237_EN)
Fig. F74 – Example of tripping curve of earth leakage protection (DB431028_EN)
Fig. F75 – Exemple of tripping curve of RS type ground fault protection (DB431029_EN)
Fig. F76 – Exemple of Compact NSX630 with integrated Residual sensing ground fault protection Micrologic 6.3E (PB119909)
Fig. F77 – Different types of ground fault prodections
(DB422238a)
(DB422238b)
(DB422238c)
Fig. F78 – Exemple of 250 A MCCB with earth leakage measurement and alarming (Compact NSX Micrologic Vigi 4.3) (PB119910)
Fig. F79 – Exemple of external earth leakage monitoring relay (PB119911)
Fig. F80 – Serial Arc (DB422949a_EN)
Fig. F81 – Parallel arc fault (DB422949b_EN)
Fig. F82 – Arc fault generation (DB431031_EN)
Fig. F83 – Illustration of a resisitive short circuit (PB116753)
Fig. F84 – Example of a carbonized connection (PB116752)
Fig. F85 – Situation increasing risks of fire
(DB422266a)
(DB422266b)
(DB422266c)
(DB422266d)
(DB422266e)
(DB422266f)
(DB422266g)
(DB422266h)
Fig. F86 – MCB vs AFDD tripping curve (DB422950_EN)
Fig. F87 – General principle of Schneider Electric arc fault detection devices (DB431034_EN)
Fig. F88 – Anomalies in electric currents that could indicate the presence of potentially dangerous arc faults (DB422951_EN)
Fig. F89 – Typical waveform of electric arc. Arc voltage (black) and current (green) (DB431026)
Fig. F90 – Methods of construction of Arc fault detection devices (DB431036_EN)
Fig. F91 – AFD unit with opening means installed in series with an RCBO (DB431037_EN)
Fig. F92 – AFD unit with MCB (DB431038_EN)
Fig. F93 – Schneider Electric arc fault detection unit (PB119908_L21)
Fig. F94 – Schneider Electric AFDD (PB116754)