User:LMischler/Img-2016-F

From Electrical Installation Guide
Fig. F1 – Zones time/current of effects of AC current on human body when passing from left hand to feet (DB422220_EN)
Fig. F2 – Direct contact (DB422221_EN)
Fig. F3 – Indirect contact (DB422222_EN)
Fig. F4 – Inherent protection against direct contact by insulation of a 3-phase cable with outer sheath (DB422223)
Fig. F5 – Example of isolation by envelope (PB116740)
Fig. F6 – High sensitivity RCD (PB116741)
Fig. F7 – Illustration of the dangerous touch voltage Uc (DB422224_EN)
Fig. F9 – Automatic disconnection of supply for TT system (DB422225_EN)
Fig. F12 – Automatic disconnection in TN system (DB422226_EN)
Fig. F14 – Disconnection by circuit breaker for a TN system (DB422227_EN)
Fig. F15 – Disconnection by fuses for a TN system (DB422228_EN)
Fig. F16 – Phases to earth insulation monitoring device obligatory in IT system (PB116742)
Fig. F17 – Fault current path for a first fault in IT system (DB422229_EN)
Fig. F18 – Circuit breaker tripping on double fault situation when exposed-conductive-parts are connected to a common protective conductor (DB422230_EN)
Fig. F20 – Application of RCDs when exposed-conductive-parts are earthed individually or by group on IT system (DB422231_EN)
Fig. F21 – Low-voltage supplies from a safety isolating transformer (DB422232)
Fig. F22 – Safety supply from a class II separation transformer (DB422233)
Fig. F23 – Principle of class II insulation level (DB422234_EN)
Fig. F24 – Protection by out-of arm’s reach arrangements and the interposition of non-conducting obstacles (DB422235_EN)
Fig. F25 – Equipotential bonding of all exposed-conductive-parts simultaneously accessible (DB422236_EN)
Fig. F26 – Origin of fires in buildings (DB422237_EN)
Fig. F27 – Different types of ground fault protections (DB422238a)
Fig. F27 – Different types of ground fault protections (DB422238b)
Fig. F27 – Different types of ground fault protections (DB422238c)
Fig. F29 – Distribution circuits (DB422239_EN)
Fig. F30 – Separate earth electrode (DB422240_EN)
Fig. F31 – Circuit supplying socket-outlets (DB422241)
Fig. F32 – Fire-risk location (DB422242_EN)
Fig. F33 – Unearthed exposed conductive parts (A) (DB422243)
Fig. F34 – Total discrimination at 2 levels (DB422244_EN)
Fig. F35 – Total discrimination at 2 levels (DB422245_EN)
Fig. F36 – Total discrimination at 3 or 4 levels (DB422246_EN)
Fig. F37 – Typical 3-level installation, showing the protection of distribution circuits in a TT-earthed system. One motor is provided with specific protection (DB422247_EN)
Fig. F38 – Implementation of the TN system of earthing (DB422248_EN)
Fig. F39 – Calculation of L max. for a TN-earthed system, using the conventional method (DB422249)
Fig. F45 – Separate earth electrode (DB422240_EN)
Fig. F46 – Circuit supplying socket-outlets (DB422241)
Fig. F47 – Fire-risk location (DB422242_EN)
Fig. F48 – Circuit breaker with low-set instantaneous magnetic tripping (DB422250_EN)
Fig. F49 – RCD protection on TN systems with high earth-fault-loop impedance (DB422251_EN)
Fig. F50 – Improved equipotential bonding (DB422252_EN)
Fig. F52 – Positions of essential functions in 3-phase 3-wire IT-earthed system (DB422253_EN)
Fig. F53 – Non-automatic (manual) fault location (DB422254)
Fig. F54 – Fixed automatic fault location (DB422255_EN)
Fig. F55 – Automatic fault location and insulation-resistance data logging (DB422256)
Fig. F56 – Calculation of Lmax. for an IT-earthed system, showing fault-current path for a double-fault condition (DB422257_EN)
Fig. F58 – Circuit supplying socket-outlets (DB422267)
Fig. F59 – Fire-risk location (DB422258_EN)
Fig. F60 – A circuit breaker with low-set instantaneous magnetic trip (DB422259_EN)
Fig. F61 – RCD protection (DB422251_EN)
Fig. F62 – Improved equipotential bonding (DB422252_EN)
Fig. F63 – The principle of RCD operation (DB422260)
Fig. F64 – Industrial-type CB with RCD module (PB116743)
Fig. F64 – Industrial-type CB with RCD module (PB116744)
Fig. F64 – Industrial-type CB with RCD module (PB116745)
Fig. F65 – Domestic residual current circuit breakers (RCCBs) for earth leakage protection (PB116746)
Fig. F65 – Domestic residual current circuit breakers (RCCBs) for earth leakage protection (PB116747)
Fig. F66 – RCDs with separate toroidal current transformers (Vigirex) (PB116748)
Fig. F66 – RCDs with separate toroidal current transformers (Vigirex) (PB116749)
Fig. F67 – Standardized 0.5 µs/100 kHz current transient wave (DB422261_EN)
Fig. F68 – Standardized 1.2/50 µs voltage transient wave (DB422262_EN)
Fig. F69 – Standardized current-impulse wave 8/20 µs (DB422263_EN)
Fig. F73 – Means of reducing the ratio IΔn/Iph (max.) (DB422264)
Fig. F75 – Residual current circuit breakers (RCCBs) (DB422265)
Fig. F76 – Example of a carbonized connection (PB116752)
Fig. F77 – Illustration of a resistive short circuit (PB116753)
Fig. F78 – Situation increasing risks of fire (DB422266a)
Fig. F78 – Situation increasing risks of fire (DB422266b)
Fig. F78 – Situation increasing risks of fire (DB422266c)
Fig. F78 – Situation increasing risks of fire (DB422266d)
Fig. F78 – Situation increasing risks of fire (DB422266e)
Fig. F78 – Situation increasing risks of fire (DB422266f)
Fig. F78 – Situation increasing risks of fire (DB422266g)
Fig. F78 – Situation increasing risks of fire (DB422266h)
Fig. F79 – Example of an arc fault detector for residential installations in Europe (PB116754)
Fig. F80 – Typical waveform of electric arc. Voltage (black) and current (green) (PB116755)