Personal tools

User:LMischler/AllPages-2016

From Electrical Installation Guide

Jump to: navigation , search

A - : General rules of electrical installation design
A 1 : Electrical installation design methodology
A 2 : Electrical installation rules, standards
A 2.x : Definition of voltage ranges
A 2.x : Electrical regulations and standards
A 2.x : Quality and safety of an electrical installation
A 2.x : Environmental directives
A 3 : Installed power loads - Characteristics
A 3.x : Induction motors
A 3.x : Resistive-type heating appliances and incandescent lamps (conventional or halogen)
A 3.x : Fluorescent lamps
A 3.x : Discharge lamps
A 3.x : LED lamps & fixtures
A 4 : Power loading of an installation
A 4.x : Installed power (kW)
A 4.x : Installed apparent power (kVA)
A 4.x : Estimation of actual maximum kVA demand
A 4.x : Example of application of factors ku and ks
A 4.x : Choice of transformer rating
A 4.x : Choice of power-supply sources


B - : Connection to the MV utility distribution network
B 1 : Power supply at medium voltage
B 1.x : Main requirements for power supply at Medium Voltage and typical architectures
B 1.x : Medium voltages and current values according to IEC Standards
B 1.x : Different types of MV power supply
B 1.x : Some practical issues concerning MV distribution networks
B 2 : Procedure for the establishment of a new substation
B 3 : Protection against electrical hazards, faults and mis-operations in electrical installations
B 3.x : General principle of protection against electrical shocks in electrical installations
B 3.x : Protection of transformer and circuits
B 3.x : MV/LV transformer protection with circuit breaker
B 3.x : Interlocks and conditioned operations
B 4 : The consumer substation with LV metering
B 4.x : Functions of a substation with LV metering
B 4.x : Choice of MV equipment for a substation with LV metering
B 5 : The consumer substation with MV metering
B 5.x : Functions of the substation with MV metering
B 5.x : Choice of MV equipment for a substation with MV metering
B 6 : Choice and use of MV equipment and MV/LV transformer
B 6.x : Choice of MV equipment
B 6.x : Instructions for use of MV equipment
B 6.x : Choice of MV/LV transformer
B 6.x : Ventilation in MV Substations
B 7 : Substation including generators and parallel operation of transformers
B 8 : Types and constitution of MV/LV distribution substations
B 8.x : Indoor substation
B 8.x : Outdoor substations


C - : Connection to the LV utility distribution network
C 1 : Low voltage utility distribution networks
C 1.x : Low-voltage consumers
C 1.x : Low-voltage distribution networks
C 1.x : The consumer-service connection
C 1.x : Quality of supply voltage
C 2 : Low voltage tariff and metering


D - : MV and LV architecture selection guide for buildings
D 1 : Stakes of architecture design
D 2 : Simplified architecture design process
D 2.x : The architecture design
D 2.x : The whole process
D 3 : Electrical installation characteristics
D 4 : Technological characteristics
D 5 : Architecture assessment criteria
D 6 : Choice of architecture fundamentals
D 6.x : Connection to the utility network
D 6.x : Internal MV circuits
D 6.x : Number and localisation of MV/LV transformer substations
D 6.x : Number of MV/LV transformers
D 6.x : MV back-up generator
D 7 : Choice of architecture details
D 7.x : LV distribution - centralized or distributed layout
D 7.x : Presence of LV back-up generators
D 7.x : Presence of an Uninterruptible Power Supply (UPS)
D 7.x : Configuration of LV circuits
D 8 : Choice of equipment
D 9 : Recommendations for architecture optimization
D 10 : Glossary
D 11 : Example: electrical installation in a printworks


E - : LV Distribution
E 1 : Earthing schemes
E 1.x : Earthing connections
E 1.x : Definition of standardised earthing schemes
E 1.x : Characteristics of TT, TN and IT systems
E 1.x : Selection criteria for the TT, TN and IT systems
E 1.x : Choice of earthing method - implementation
E 1.x : Installation and measurements of earth electrodes
E 2 : The installation system
E 2.x : Distribution switchboards
E 2.x : Cables and busways
E 2.x : Harmonic currents in the selection of busbar trunking systems (busways)
E 3 : External influences (IEC 60364-5-51)
E 3.x : Definition and reference standards
E 3.x : Classification
E 3.x : List of external influences
E 3.x : Protection provided for enclosed equipment: codes IP and IK


F - : Protection against electric shocks and electric fires
F 1 : Electrical protection of persons
F 1.x : Electric shock
F 1.x : Fundamental rule of protection
F 1.x : Direct and indirect contact
F 2 : Protection against direct contact
F 2.x : Measures of protection against direct contact
F 2.x : Additional measure of protection against direct contact
F 3 : Protection against indirect contact
F 3.x : Measures of protection: two levels
F 3.x : Automatic disconnection for TT system
F 3.x : Automatic disconnection for TN systems
F 3.x : Automatic disconnection on a second fault in an IT system
F 3.x : Measures of protection against direct or indirect contact without automatic disconnection of supply
F 4 : Protection of goods in case of insulation fault
F 4.x : Measures of protection against fire risk with RCDs
F 4.x : Ground Fault Protection (GFP)
F 5 : Implementation of the TT system
F 5.x : TT system - Protective measures
F 5.x : TT system - Coordination of residual current protective devices
F 6 : Implementation of the TN system
F 6.x : TN system - Preliminary conditions
F 6.x : TN system - Protection against indirect contact
F 6.x : TN system - High-sensitivity RCDs
F 6.x : TN system - Protection in high fire-risk locations
F 6.x : TN system - When the fault current-loop impedance is particularly high
F 7 : Implementation of the IT system
F 7.x : IT system - Preliminary conditions
F 7.x : IT system - Protection against indirect contact
F 7.x : IT system - High-sensitivity RCDs
F 7.x : IT system - Protection in high fire-risk locations
F 7.x : IT system - When the fault current-loop impedance is particularly high
F 8 : Residual current devices (RCDs)
F 8.x : Description of RCDs
F 8.x : Types of RCDs
F 8.x : Sensitivity of RCDs to disturbances
F 9 : Arc Fault Detection Devices (AFDD)


G - : Sizing and protection of conductors
G 1 : Conductor sizing and protection
G 1.x : Conductor sizing: methodology and definition
G 1.x : Overcurrent protection principles
G 1.x : Practical values for a protective scheme
G 1.x : Location of protective devices
G 1.x : Conductors in parallel
G 2 : Practical method for determining the smallest allowable cross-sectional area of circuit conductors
G 2.x : General method for cable sizing
G 2.x : Recommended simplified approach for cable sizing
G 2.x : Sizing of busbar trunking systems (busways)
G 3 : Determination of voltage drop
G 3.x : Maximum voltage drop limit
G 3.x : Calculation of voltage drop in steady load conditions
G 4 : Short-circuit current
G 4.x : Short-circuit current at the secondary terminals of a MV/LV distribution transformer
G 4.x : 3-phase short-circuit current (Isc) at any point within a LV installation
G 4.x : Isc at the receiving end of a feeder as a function of the Isc at its sending end
G 4.x : Short-circuit current supplied by a generator or an inverter
G 5 : Particular cases of short-circuit current
G 5.x : Calculation of minimum levels of short-circuit current
G 5.x : Verification of the withstand capabilities of cables under short-circuit conditions
G 6 : Protective earthing conductor (PE)
G 6.x : Connection and choice for protective earthing conductor
G 6.x : Sizing of protective earthing conductor
G 6.x : Protective conductor between MV/LV transformer and the main general distribution board (MGDB)
G 6.x : Equipotential conductor
G 7 : The neutral conductor
G 7.x : Sizing the neutral conductor
G 7.x : Protection of the neutral conductor
G 7.x : Breaking of the neutral conductor
G 7.x : Isolation of the neutral conductor
G 8 : Worked example of cable calculation


H - : LV switchgear: functions and selection
H 1 : The basic functions of LV switchgear
H 1.x : LV switchgear functions - Electrical protection
H 1.x : LV switchgear functions - Isolation
H 1.x : LV switchgear functions - Switchgear control
H 2 : The switchgear
H 2.x : Elementary switching devices
H 2.x : Combined switchgear elements
H 3 : Choice of switchgear
H 3.x : Switchgear selection
H 3.x : Tabulated functional capabilities of LV switchgear
H 4 : Circuit-breaker
H 4.x : Standards and description of circuit-breakers
H 4.x : Fundamental characteristics of a circuit-breaker
H 4.x : Other characteristics of a circuit-breaker
H 4.x : Selection of a circuit-breaker
H 4.x : Coordination between circuit-breakers
H 4.x : Discrimination MV/LV in a consumer’s substation
H 4.x : Circuit-breakers suitable for IT systems
H 4.x : Ultra-rapid circuit breaker
H 5 : Maintenance of low voltage switchgear


J - : Overvoltage protection
J 1 : Overvoltage of atmospheric origin
J 1.x : Overvoltage definitions
J 1.x : Overvoltage characteristics of atmospheric origin
J 1.x : Effects on electrical installations
J 1.x : Characterization of the lightning wave
J 2 : Principle of lightning protection
J 2.x : General rules of lightning protection
J 2.x : Building protection system
J 2.x : Lightning protection - Electrical installation protection system
J 2.x : The Surge Protection Device (SPD)
J 3 : Design of the electrical installation protection system
J 3.x : Design rules of the electrical installation protection system
J 3.x : Elements of the protection system
J 3.x : Common characteristics of SPDs according to the installation characteristics
J 3.x : Selection of a Type 1 SPD
J 3.x : Selection of a Type 2 SPD
J 3.x : Selection of external Short Circuit Protection Device (SCPD)
J 3.x : SPD and protection device coordination table
J 4 : Installation of Surge Protection Device
J 4.x : Connection of Surge Protection Device
J 4.x : Cabling rules of Surge Protection Device
J 5 : Surge protection Application examples
J 5.x : SPD application example in Supermarket
J 5.x : SPD for photovoltaic applications
J 6 : Surge protection technical supplements
J 6.x : Lightning protection standards
J 6.x : The components of a SPD
J 6.x : End-of-life indication of a SPD
J 6.x : Detailed characteristics of the external SCPD
J 6.x : Propagation of a lightning wave
J 6.x : Example of lightning current in TT system


K - : Energy Efficiency in electrical distribution
K 1 : Energy Efficiency in brief
K 2 : Energy efficiency and electricity
K 2.x : An international appetite for Energy Efficiency regulation
K 2.x : Energy Efficiency standards
K 2.x : IEC 60364-8-1 standard : Energy Efficiency in low-voltage electrical installations
K 2.x : Practical considerations to achieve Energy Efficiency
K 3 : Diagnosis through electrical measurement
K 4 : Energy saving opportunities
K 4.x : Energy saving opportunities - Motors
K 4.x : Energy saving opportunities - Lighting
K 4.x : Energy saving opportunities - Power factor correction and harmonic filtering
K 4.x : Energy saving opportunities - Load management
K 4.x : Energy saving opportunities - Communication and information systems
K 4.x : Energy saving opportunities - Smart Panels
K 5 : How to evaluate energy savings


L - : Power Factor Correction
L 1 : Power factor and Reactive power
L 1.x : Definition of Power Factor
L 1.x : Definition of reactive power
L 1.x : The nature of reactive power
L 1.x : Reactive power of capacitors
L 1.x : Equipment and appliances requiring reactive energy
L 1.x : Practical values of power factor
L 2 : Why improve the power factor?
L 3 : How to improve the power factor?
L 3.x : Theoretical principles to improve power factor
L 3.x : Equipment to improve power factor
L 3.x : The choice between a fixed or automatically-regulated bank of capacitors
L 4 : Where to install power factor correction capacitors?
L 5 : How to determine the optimum level of compensation?
L 6 : Compensation at the terminals of a transformer
L 6.x : Compensation to increase the available active power output
L 6.x : Compensation of reactive energy absorbed by the transformer
L 7 : Power factor correction of induction motors
L 8 : Example of an installation before and after power-factor correction
L 9 : The effects of harmonics
L 9.x : Problems arising from power-system harmonics
L 9.x : Risk of resonance due to power-system harmonics
L 9.x : Possible solutions for power-system harmonics
L 10 : Implementation of capacitor banks


M - : Power harmonics management
M 1 : Detect and eliminate harmonics: why?
M 2 : Definition and origin of harmonics
M 2.x : Definition of harmonics
M 2.x : Origin of harmonics
M 3 : Essential indicators of harmonic distortion and measurement principles
M 3.x : Harmonic distortion indicators - Power factor
M 3.x : Harmonic distortion indicators - Crest factor
M 3.x : Harmonic spectrum
M 3.x : r.m.s. values
M 3.x : Usefulness of the various indicators of Harmonic distortion
M 4 : Harmonic measurement in electrical networks
M 5 : Main effects of harmonics in electrical installations
M 5.x : Effects of harmonics - Resonance
M 5.x : Effects of harmonics - Increased losses
M 5.x : Effects of harmonics - Overload of equipment
M 5.x : Effects of harmonics - Disturbances affecting sensitive loads
M 5.x : Effects of harmonics - Economic impact
M 6 : Harmonics standards
M 7 : Solutions to mitigate harmonics
M 7.x : Basic solutions to mitigate harmonics
M 7.x : Harmonic filtering
M 7.x : The method to optimize harmonics mitigation


N - : Characteristics of particular sources and loads
N 1 : Protection of a LV generator set and the downstream circuits
N 1.x : Generator protection
N 1.x : Downstream LV network protection
N 1.x : The monitoring functions with a generator
N 1.x : Generator Set parallel-connection
N 2 : Uninterruptible Power Supply units (UPS)
N 2.x : Availability and quality of electrical power
N 2.x : Types of static UPSs
N 2.x : UPS Batteries
N 2.x : System earthing arrangements for installations comprising UPSs
N 2.x : Choice of protection schemes with UPS
N 2.x : Installation, connection and sizing of cables with UPS
N 2.x : The UPSs and their environment
N 2.x : Complementary equipment for UPS
N 3 : Protection of LV/LV transformers
N 3.x : Transformer-energizing inrush current
N 3.x : Protection for the supply circuit of a LV/LV transformer
N 3.x : Typical electrical characteristics of LV/LV 50 Hz transformers
N 3.x : Protection of LV/LV transformers, using Schneider Electric circuit-breakers
N 4 : Lighting circuits
N 4.x : The different lamp technologies
N 4.x : Electrical characteristics of lamps
N 4.x : Constraints related to lighting devices and recommendations
N 4.x : Particular constraints for LED lighting technology
N 4.x : Choice of relay according to lamp type
N 4.x : Choice of circuit-breaker according to lamp type
N 4.x : Lighting of public areas
N 5 : Asynchronous motors
N 5.x : Motor control systems
N 5.x : Motor protection functions
N 5.x : Motor monitoring
N 5.x : Motor starter configurations
N 5.x : Motor protection coordination
N 5.x : Basic motor protection scheme: circuit-breaker + contactor + thermal relay
N 5.x : Control and protection switching gear (CPS)
N 5.x : Intelligent Power and Motor Control Centre (iPMCC)
N 5.x : Communication protocols and architectures in iPMCC


P - : PhotoVoltaic (PV) installation
P 1 : Benefits of photovoltaic energy
P 2 : Photovoltaic background, technology
P 3 : PV System and Installation Rules
P 3.x : PV System: how to ensure safety during normal operation
P 3.x : PV System: protection against overvoltages
P 3.x : PV System: how to ensure safety during maintenance or emergency
P 3.x : PV System: how to ensure safety during all the life cycle of the installation
P 4 : Photovoltaic installation architectures
P 4.x : Photovoltaic architectures - common characteristics
P 4.x : Photovoltaic architectures - installations connected to the grid
P 4.x : Photovoltaic system sizing
P 4.x : Photovoltaic installation type
P 4.x : Photovoltaic system: electrical equipments selection
P 5 : PV monitoring


Q - : Residential and other special locations
Q 1 : Residential electrical installation
Q 1.x : Residential electrical installation - General
Q 1.x : Residential electrical installation - Distribution boards components
Q 1.x : Residential electrical installation - Protection of people
Q 1.x : Residential electrical installation - Circuits
Q 1.x : Residential electrical installation - Protection against overvoltages and lightning
Q 2 : Bathroom electrical installation
Q 3 : Recommendations applicable to special installations and locations


R - : ElectroMagnetic Compatibility (EMC)
R 1 : EMC behaviour of different electrical distribution architecturing
R 2 : EMC - Earthing principles and structures
R 3 : EMC implementation
R 3.x : Equipotential bonding inside and outside buildings
R 3.x : EMC implementation - Improving equipotential conditions
R 3.x : EMC implementation - Separating cables
R 3.x : EMC implementation - Raised floors
R 3.x : EMC implementation - Cable running
R 3.x : EMC implementation - Busway
R 3.x : EMC implementation - Implementation of shielded cables
R 3.x : EMC implementation - Communication networks
R 3.x : EMC implementation - Implementation of surge arresters
R 3.x : EMC implementation - Cabinet cabling
R 3.x : EMC implementation - Standards
R 3.x : EMC implementation - Electrostatic discharge protection
R 4 : EMC - Coupling mechanisms and counter-measures
R 4.x : Common-mode impedance coupling
R 4.x : Capacitive coupling
R 4.x : Inductive coupling
R 4.x : Radiated coupling
R 5 : Wiring recommendations


S - : Measurement
S 1 : Measurement applications
S 2.x : Measurement for Energy efficiency and cost savings
S 2.x : Measurement for Power availability and reliability
S 2.x : Measurement for Grid power quality
S 2.x : Measurement for Billing
S 2.x : Measurement for Cost allocation, bill checking and sub-billing
S 2 : Focus on IEC 61557-12 standard