# Isc at the receiving end of a feeder as a function of the Isc at its sending end

The network shown in Figure G38 typifies a case for the application of Figure G39 , derived by the «method of composition» (mentioned in Chapter F ). These tables give a rapid and sufficiently accurate value of short-circuit current at a point in a network, knowing:

• The value of short-circuit current upstream of the point considered
• The length and composition of the circuit between the point at which the short-circuit current level is known, and the point at which the level is to be determined

It is then sufficient to select a circuit-breaker with an appropriate short-circuit fault rating immediately above that indicated in the tables.
If more precise values are required, it is possible to make a detailled calculation or to use a software package, such as Ecodial. In such a case, moreover, the possibility of using the cascading technique should be considered, in which the use of a current limiting circuit-breaker at the upstream position would allow all circuit-breakers downstream of the limiter to have a short-circuit current rating much lower than would otherwise be necessary (See chapter H ).
Method
Select the c.s.a. of the conductor in the column for copper conductors (in this example the c.s.a. is 47.5 mm2).
Search along the row corresponding to 47.5 mm2 for the length of conductor equal to that of the circuit concerned (or the nearest possible on the low side). Descend vertically the column in which the length is located, and stop at a row in the middle section (of the 3 sections of the Figure) corresponding to the known fault-current level (or the nearest to it on the high side).
In this case 30 kA is the nearest to 28 kA on the high side. The value of short-circuit current at the downstream end of the 20 metre circuit is given at the intersection of the vertical column in which the length is located, and the horizontal row corresponding to the upstream Isc (or nearest to it on the high side).
This value in the example is seen to be 14.7 kA.
The procedure for aluminium conductors is similar, but the vertical column must be ascended into the middle section of the table.
In consequence, a DIN-rail-mounted circuit-breaker rated at 63 A and Isc of 25 kA (such as a NG 125N unit) can be used for the 55 A circuit in Figure G38.
A Compact rated at 160 A with an Isc capacity of 25 kA (such as a NS160 unit) can be used to protect the 160 A circuit.

Fig. G38: Determination of downstream short-circuit current level Isc using Figure G39

 Copper 230 V / 400 V c.s.a.of phase      conductors (mm2) Length of circuit (in metres) 1.5 1.3 1.8 2.6 3.6 5.2 7.3 10.3 14.6 21 2.5 1.1 1.5 2.1 3.0 4.3 6.1 8.6 12.1 17.2 24 34 4 1.2 1.7 2.4 3.4 4.9 6.9 9.7 13.7 19.4 27 39 55 6 1.8 2.6 3.6 5.2 7.3 10.3 14.6 21 29 41 58 82 10 2.2 3.0 4.3 6.1 8.6 12.2 17.2 24 34 49 69 97 137 16 1.7 2.4 3.4 4.9 6.9 9.7 13.8 19.4 27 39 55 78 110 155 220 25 1.3 1.9 2.7 3.8 5.4 7.6 10.8 15.2 21 30 43 61 86 121 172 243 343 35 1.9 2.7 3.8 5.3 7.5 10.6 15.1 21 30 43 60 85 120 170 240 340 480 47.5 1.8 2.6 3.6 5.1 7.2 10.2 14.4 20 29 41 58 82 115 163 231 326 461 70 2.7 3.8 5.3 7.5 10.7 15.1 21 30 43 60 85 120 170 240 340 95 2.6 3.6 5.1 7.2 10.2 14.5 20 29 41 58 82 115 163 231 326 461 120 1.6 2.3 3.2 4.6 6.5 9.1 12.9 18.3 26 37 52 73 103 146 206 291 412 150 1.2 1.8 2.5 3.5 5.0 7.0 9.9 14.0 19.8 28 40 56 79 112 159 224 317 448 185 1.5 2.1 2.9 4.2 5.9 8.3 11.7 16.6 23 33 47 66 94 133 187 265 374 529 240 1.8 2.6 3.7 5.2 7.3 10.3 4.6 21 29 41 58 83 117 165 233 330 466 659 300 2.2 3.1 4.4 6.2 8.8 12.4 17.6 25 35 50 70 99 140 198 280 396 561 2x120 2.3 3.2 4.6 6.5 9.1 12.9 18.3 26 37 52 73 103 146 206 292 412 583 2x150 2.5 3.5 5.0 7.0 9.9 14.0 20 28 40 56 79 112 159 224 317 448 634 2x185 2.9 4.2 5.9 8.3 11.7 16.6 23 33 47 66 94 133 187 265 375 530 749 3x120 3.4 4.9 6.9 9.7 13.7 19.4 27 39 55 77 110 155 219 309 438 619 3x150 3.7 5.3 7.5 10.5 14.9 21 30 42 60 84 119 168 238 336 476 672 3x185 4.4 6.2 8.8 12.5 17.6 25 35 50 70 100 141 199 281 398 562 Isc upstream(in kA) Isc downstream(in kA) 100 93 90 87 82 77 70 62 54 45 37 29 22 17.0 12.6 9.3 6.7 4.9 3.5 2.5 1.8 1.3 0.9 90 84 82 79 75 71 65 58 51 43 35 28 22 16.7 12.5 9.2 6.7 4.8 3.5. 2.5 1.8 1.3 0.9 80 75 74 71 68 64 59 54 47 40 34 27 21 16.3 12.2 9.1 6.6 4.8 3.5 2.5 1.8 1.3 0.9 70 66 65 63 61 58 54 49 44 38 32 26 20 15.8 12.0 8.9 6.6 4.8 3.4 2.5 1.8 1.3 0.9 60 57 56 55 53 51 48 44 39 35 29 24 20 15.2 11.6 8.7 6.5 4.7 3.4 2.5 1.8 1.3 0.9 50 48 47 46 45 43 41 38 35 31 27 22 18.3 14.5 11.2 8.5 6.3 4.6 3.4 2.4 1.7 1.2 0.9 40 39 38 38 37 36 34 32 30 27 24 20 16.8 13.5 10.6 8.1 6.1 4.5 3.3 2.4 1.7 1.2 0.9 35 34 34 33 33 32 30 29 27 24 22 18.8 15.8 12.9 10.2 7.9 6.0 4.5 3.3 2.4 1.7 1.2 0.9 30 29 29 29 28 27 27 25 24 22 20 17.3 14.7 12.2 9.8 7.6 5.8 4.4 3.2 2.4 1.7 1.2 0.9 25 25 24 24 24 23 23 22 21 19.1 17.4 15.5 13.4 11.2 9.2 7.3 5.6 4.2 3.2 2.3 1.7 1.2 0.9 20 20 20 19.4 19.2 18.8 18.4 17.8 17.0 16.1 14.9 13.4 11.8 10.1 8.4 6.8 5.3 4.1 3.1 2.3 1.7 1.2 0.9 15 14.8 41.8 14.7 14.5 14.3 14.1 13.7 3.3 12.7 11.9 11.0 9.9 8.7 7.4 6.1 4.9 3.8 2.9 2.2 1.6 1.2 0.9 10 9.9 9.9 9.8 9.8 9.7 9.6 9.4 9.2 8.9 8.5 8.0 7.4 6.7 5.9 5.1 4.2 3.4 2.7 2.0 1.5 1.1 0.8 7 7.0 6.9 6.9 6.9 6.9 6.8 6.7 6.6 6.4 6.2 6.0 5.6 5.2 4.7 4.2 3.6 3.0 2.4 1.9 1.4 1.1 0.8 5 5.0 5.0 5.0 4.9 4.9 4.9 4.9 4.8 4.7 4.6 4.5 4.3 4.0 3.7 3.4 3.0 2.5 2.1 1.7 1.3 1.0 0.8 4 4.0 4.0 4.0 4.0 4.0 3.9 3.9 3.9 3.8 3.7 3.6 3.5 3.3 3.1 2.9 2.6 2.2 1.9 1.6 1.2 1.0 0.7 3 3.0 3.0 3.0 3.0 3.0 3.0 2.9 2.9 2.9 2.9 2.8 2.7 2.6 2.5 2.3 2.1 1.9 1.6 1.4 1.1 0.9 0.7 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 12.0 1.9 1.9 1.9 1.8 1.8 1.7 1.6 1.4 1.3 1.1 1.0 0.8 0.6 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.7 0.6 0.6 0.5 Aluminium 230 V / 400 V c.s.a. of phaseconductors (mm2) Length of circuit (in metres) 2.5 1.4 1.9 2.7 3.8 5.4 7.6 10.8 15.3 22 4 1.1 1.5 2.2 3.1 4.3 6.1 8.6 12.2 17.3 24 35 6 1.6 2.3 3.2 4.6 6.5 9.2 13.0 18.3 26 37 52 10 1.9 2.7 3.8 5.4 7.7 10.8 51.3 22 31 43 61 86 16 2.2 3.1 4.3 6.1 8.7 12.2 17.3 24 35 49 69 98 138 25 17.1 2.4 3.4 4.8 6.8 9.6 13.5 19.1 27 38 54 76 108 153 216 35 1.7 2.4 3.4 4.7 6.7 9.5 13.4 18.9 27 38 54 76 107 151 214 302 47.5 1.6 2.3 3.2 4.6 6.4 9.1 12.9 18.2 26 36 51 73 103 148 205 290 410 70 2.4 3.4 4.7 6.7 9.5 13.4 19.0 27 38 54 76 1.7 151 214 303 428 95 2.3 3.2 4.6 6.4 9.1 12.9 18.2 26 36 51 73 103 145 205 290 411 120 2.9 4.1 5.8 8.1 11.5 16.3 23 32 46 65 92 130 184 259 367 150 3.1 4.4 6.3 8.8 12.5 17.7 25 35 50 71 100 141 199 282 399 185 2.6 3.7 5.2 7.4 10.4 14.8 21 30 42 59 83 118 167 236 333 471 240 1.2 1.6 2.3 3.3 4.6 6.5 9.2 13.0 18.4 26 37 52 73 104 147 208 294 415 300 1.4 2.0 2.8 3.9 5.5 7.8 11.1 15.6 22 31 34 62 88 125 177 250 353 499 2x120 1.4 2.0 2.9 4.1 5.8 8.1 11.5 16.3 23 33 46 65 92 130 184 260 367 519 2x150 1.6 2.2 3.1 4.4 6.3 8.8 12.5 17.7 25 35 50 71 100 141 200 280 399 2x185 1.9 2.6 2.7 5.2 7.4 10.5 14.8 21 13 42 59 83 118 167 236 334 472 2x240 2.3 3.3 4.6 6.5 9.2 13.0 18.4 26 37 52 74 104 147 208 294 415 587 3x120 2.2 3.1 4.3 6.1 8.6 12.2 17.3 24 34 49 69 97 138 195 275 389 551 3x150 2.3 3.3 4.7 6.6 9.4 13.3 18.8 27 37 53 75 106 150 212 299 423 598 3x185 2.8 3.9 5.5 7.8 11.1 13.7 22 31 44 63 89 125 177 250 354 500 707 3x240 3.5 4.9 6.9 9.8 13.8 19.5 28 39 55 78 110 156 220 312 441 623

Note: for a 3-phase system having 230 V between phases, divide the above lengths by $\sqrt 3$

Fig. G39: Isc at a point downstream, as a function of a known upstream fault-current value and the length and c.s.a. of the intervening conductors, in a 230/400 V 3-phase system